• List of References on MSE Representative Points of Statistical Distribitions

    Kai-Tai Fang, Division of Science and Technology, BNU-HKBU United International College,Zhuhai, 519085, China

    Representative points are those points that better represent theoriginal continuous distribution, which can be defined under different criterions. This list collects some references that have been used in our research. We would appreciate if you could provide more references to us.

    1. Antle, C.E., Bain, L.J. (1969), A property of maximum likelihood estimators of location and scale parameters, SIAM Rev., 11, 251–253.

    2. Abut, H., Gray, R.M. and Rebolledo, G. (1982), Vector quantization of speech and speech-like waveforms,  IEEE Trans. Acoust., Speech, Signal Processing, ASSP-30, 423-435.

    3. Akinshin, A. (2021), Efficiency of the harrell-davis quantile estimator, https://aakinshin.net/posts/hdqe-efficiency/.

    4. Amèndola, C., Drton, M., Sturmfels,B. (2015). Maximum likelihood   estimates for gaussian mixtures are transcendental. arXiv: Statistics Theory.

    5. Anderberg, M. R. (1973), Cluster analysis for applications, San Diego: Academic Press.

    6. Andrew, G.; Qi, C.; Alan, D.K.;Ron, W. (2021), Pulse pileup rejection methods using a two-component Gaussian Mixture Model for fast neutron detection with pulse shape discriminating scintillator, Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip., 988.

    7. Arthur, D. and Vassilvitskii, S. (2007), k-means++, test code, The Advantages of Careful Seeding. http://www.stanford.edu/~darthur/kMeansppTest.zip.

    8. Abaya, E.F. and  Wise, G.L. (1984), Convergence of vector quantizers with applications to optimal quantization,   SIAM Journal on Applied Mathematics, 44, No. 1, pp. 183-189.

    9. Baklizi, A. (2012), Inference on Pr(X < Y) in the Two-Parameter Weibull Model Based on Records,   International Scholarly Research Network, ISRN Probability and Statistics,   Volume 2012, Article ID 263612, doi:10.5402/2012/263612

    10. Barbiero, A. and Hitaj, A. (2022), Discrete approximations of continuous probability   distributions obtained by minimizing Cramér-von Mises-type distances, Statistical Papers, https://doi.org/10.1007/s00362-022-01356-2.

    11. Behbeedian, J. (1970),  On the modes of a mixture of two normal distributions,Technometrics, 12, 131-139.

    12. Billingsley, P. (1995), Probability and Measure,  New York: Wiley, third ed.

    13. Bennett,  W. R. (1948), Spectra of quantized signals, Bell Syst. Tech. J., 27, 446–472.

    14. Best, D. J., Rayner, J. C. W., Thas, O. (2008). Comparison of some tests of fit for the Laplace distribution[J].    Computational Statistics and Data Analysis, 52(12): 5338-5343.

    15. Bhattacharjee, M. C. (1982). The class of mean residual lives and some consequences. SIAM Journal on Algebraic Discrete Methods, 3(1), 56-65.

    16. Bickel, P. J. and Doksum, K.A. (1977), Mathematical Statistics, Holden-Day, San Francisco.

    17. Bickel, P.J. and Freedman, D.A. (1981), Asymptotic theory for the bootstrap, The Annals of Statistics, 9, No 6, 1196-1217.

    18. Bishop, C. M. (2006), Pattern recognition and machine learning, Springer.

    19. Boringer, E. (1970), Maximizing the correlation of grouped observations,  J. American Statistical Theory, 65, 1632-1638.

    20. Cambanis, S. and Gerr, N. L. (1983), A simple class of asymptotically optimal quantizer, IEEE Trans. Inform. Theory, IT-29, 664-676.

    21. Cao H. (2018). Statistical inference and application of Laplace distribution[D]. Yangzhou: Yangzhou University.

    22. Cassie, R.M. (1954), Some uses of probability paper in the analysis of size frequency distributions,   Austral. J. of Marine and Freshwater Res., 5, 513-522.

    23. Chakraborty, S. (2015),  Generating discrete analogues of continuous probability distributions - A   survey of methods and constructions, J. Statistical Distributions and Applications, 2:6,      DOI 10.1186/s40488-015-0028-6

    24. Charles,  E.  and  Bain, ANTLE AND LEE J.  (1969),   A property of maximum likelihood estimators of location and scale parameters, SIAM Review, 11, 251--253.

    25. Calabria, R., and Pulcini, G. (1987). On the asymptotic behaviour of mean residual life function. Reliability Engineering, 19(3), 165-170.

    26. Chakraborty, S., Roychowdhury, M. K. and  Sifuentes, J. (2021), High precision numerical   computation of principal points for univariate distributions, Sankhya B: The Indian Journal of   Statistics, 558--584. https://doi.org/10.1007/s13571-020-00239-6

    27. Chen, J. (1995). Optimal rate of convergence for finite mixture models, Ann. Statist., 23, 221–233. MR1331665

    28. Chen, J. (2017), Consistency of the MLE under Mixture Models, Statistical Science, Vol. 32, No. 1, 47–63.

    29. Cheng, M. and Lei, S. (2022), The Representative points of nonlinear transformation of random variable,   Conference: CMAAE 2021: 2021 International Conference on Mechanical, Aerospace and Automotive Engineering,  DOI: 10.1145/3518781.3519185.

    30. Ciuperca, G., Ridolfi, A., Idier, J. (2003), Penalized maximum likelihood estimator for normal mixtures,   Scandinavian Journal of Statistics, 30(1), 45--49.

    31. Cox, D.R. (1957). Note on grouping, J. American Statistical Theory, 52, 543-547.

    32. Cox, D. R. (1962). Renewal theory. London: Chapman & Hall.

    33. Dalenius, T. (1950), The problem of optimum stratification, Skandinavisk Aktuarietidskrift, 33, 203-213.

    34. David, H. A. (1981), Order Statistics, 2nd edition, New York: Wiley.

    35. David, H. A. and Nagaraja, H.N. (2003), Order Statistics, 3nd edition, New York: Wiley.

    36. Day, N. E. (1969). Estimating the components of a mixture of normal distributions. Biometrika, 56(3), 463--474.

    37. Dalenius, T. (1950), The problem of optimum stratification, Skandinavisk Aktuarietidskrift, 3,203–13.

    38. Delattre, S., Fort, J-C., and Pagès, G. (2004), Local distortion and μ-Mass of the cells of  one dimensional asymptotically optimal quantizers, Communications in Statistics - Theory and Methods, 33:5, 1087-1117,

    39. Di, C.Z. and Liang, K.Y. (2011), Likelihood ratio testing for admixture models with application to genetic linkage analysis, Biometrics,  67, 1249–1259.

    40. Duan, R., Ning, Y., Wang, S., Lindsay, B. G., Carroll, R. J. and Chen, Y. (2020),  A fast score test for generalized mixture models, Biometrics  76, 811–820.

    41. Dudley, R.M. (1989), Real Analysis and Probability, The Wadsworth & Brooks Cole Math. Series, Pacific Grove, CA.

    42. Deussen, O., Spicker M. and Zheng, Q. (2017), Weighted Linde–Buzo–Gray Stippling,  Erschienen in: ACM Transactions on Graphics, 36, 6 - 233. https://dx.doi.org/10.1145/3130800.3130819

    43. Dhillon, I.S., Guan, Y. and Kogan, J. (2002, December). Iterative clustering of high dimensional text data augmented by local search. In 2002 IEEE International Conference on Data Mining, 2002. Proceedings. (pp. 131-138). IEEE.

    44. Dhillon IS, Modha DS (2001). Concept Decompositions for Large Sparse Text Data Using        Clustering. Machine Learning, 42(1), 143-175.

    45. DiCiccio, T. and Efron, B. (1992), More accurate confidence intervals in exponential families, Biometrika, 79, 231--245.

    46. Diday, E. (1974), A new approach in mixed distributions detection, Report de Recherche, N0, 52,   Insttut de Rechrche d'Informatique d'Automatique.

    47. Dombry, C. (2015), Existence and consistency of the maximum likelihood estimators for the extreme valueindex   within the block maxima framework, Bernoulli, 21(1), 420--436.

    48. Efron, B. (1967), The two sample problem with censored data, Proc.Fifth Berkeley Symp. Math. Statist. Probab., 4, 831-853,   University California Press, Berkeley, USA.

    49. Efron, B. (1979), Bootstrap methods: another look at the jacknife, The Annals of Statistics, 7, 1-26.

    50. Efron, B. and Tibshirani, R. J. (1993), An Introduction to the Bootstrap, Chapman & Hall, New York.

    51. Efron, B. (2003), Second Thoughts on the Bootstrap, Statistical Science, 18, No. 2, 135--140.

    52. Eisenberger, I. (1964). Genesis of bimodal distributions, Technometrics, 6, 367-363.

    53. Embrechts, P., Kl\"{u}ppelberg, C., and Mikosch T. (1997). Modelling extremal events for insurance and finance, Springer-Verlag.

    54. Escobar, L.A. and  Meeker, W.Q. (1994), Fisher Information Matrix for the Extreme Value, Normal and Logistic Distributions   and Censored Data, Appl. Statist., 43, No. 3, 533-554.

    55. Eubank, R. L. (1988), Optimal grouping, spacing, stratification, and piecewise constant approximation, SIAM Rev., 30, 404-420.

    56. Eugene, N, Lee, C, Famoye, F, (2002), The beta-normal distribution and its applications, Commun. Stat. Theory Methods,    31, 497–512.

    57. Fang, K. T. (1976), Application of the theory of the conditional distribution for the standareization    of clothes, Acta Mathematicae Applicatae Sinica, 2, 62-74.

    58. Fang, K. T. (1997), Elliptically contoured distributions,     Encyclopedia of Statistics, Update Vol. 1, Wiley, New York, 212-218.

    59. Fang, K.T. and He, S. (1982), The problem of selecting a given number of representative points in a normal    population and a generalized mill's ratio. Technical Report No 5, Department of Statistics, Stanford University, USA.

    60. Fang, K. T., Kotz, S. and Ng, K.W. (1990), Symmetric   Multivariate and Related Distributions, Chapman and Hall, London and New York.

    61. Fang, K.T., Yang, Z.H. and Kotz, S. (2001). Generation of multivariate  distributions by vertical density representation, Statistics, 35, 281--293.

    62. Fang, K.T., Liu, M.Q., Qin, H. and Zhou, Y.D. (2018), Theory and Application of Uniform   Experimental Designs, Science Press and Springer.

    63. Fang, K.T. and Wang, Y. (1990), A sequential algorithm for optimization     and its applications to regression analysis, in Lecture Notes in Contemporary     Mathematics (L. Yang and Y. Wang ed), 17-28, Science Press, Beijing.

    64. Fang, K.T. and Wang, Y. (1991),  A sequential algorithm for solving a sysgtem of nonlinear equations, J. Comput. Math., 9, 9-16.

    65. Fang, K. T. and Wang, Y. (1994). Number-Theoretic Methods in Statistics,Chapman & Hall, London.

    66. Fang, K.T., Wang, Y. and Bentler, P.M. (1994),  Some applications      of number-theoretic methods in statistics, Statistical Science, 9, 416-428.

    67. Fang, K.T., Wang, Y. and Wong, H.L. (1992), A new method of generating an NT-net on the unit sphere, Technical report MATH-002,      Hong Kong Baptist College, Hong Kong.

    68. Fang, K.T. and G. Wei (1993). The distribution of a class the first hitting time, Acta Math. Appl. Sinica, 15, 460-467.

    69. Fang, K. T., Yuan, K.H. and Benlter, P.M. (1994). Applications of number-theoretic    methods to quantizers of elliptically contoured distributions,     Multivariate Analysis and Its Applications, in IMS Lecture Notes - Monograph Series, 24: 211-225.

    70. Fang, K.T., Zhou, M. and Wang, W.J. (2014), Applications of the representative points   in statistical simulations,  Science in China, Series A, 57, 2609-2620.

    71. Feller, W. (1967).An Introduction to Probability Theory and Its Applications. New York: John Wiley & Sons.

    72. Fisher, R.A. and Tipperr, L.H.C. (1928), Limiting forms of the frequency distribution of the largest and smallest member of    a sample, Proc. Cambridge Philosophical Society, 24, 180-190.

    73. Fisher, T.R. (1986), A pyramid vector quantizer, IEEE Trans. Inform. Theory, IT-32, 568-583.

    74. Fisher, T.R. (1989), Geometric source coding and vector quantization, IEEE Trans. Inform. Theory, IT-35, 137-145.

    75. Fisher, T.R. and Dicharry, R.M. (1984), Vector quantizer design for memoryless Gaussian, gamma, and Laplacian sources,   IEEE Trans. Commun., COM-32, 1065-1069.

    76. Fleischer, P.E. (1964), Sufficient conditions for achieving minimum distrortion in a quantizer,   IEEE Int. Conv. Rec.,, Part 1, 104-111.

    77. Flury, B. A. (1990) Principal points. Biometrika, 77, 33-41.

    78. Flury, B. A. (1993) Estimation of principal points, J. Royal Statistical Society. Series C (Applied Statistics), 42:1, 139-151.

    79. Flury, B. A. and Riedwyl, H. (1988), Multivariate Statistics: A Practical Approach, London, Chapman and Hall.

    80. Flury, B. A. and Tarpey, T. (1993), Representing a large collection of curves: a case for pricipal points,   Amer. Statist., 47, 304-306.

    81. Flury, B. and Riedwyl, H. (1988), Multivariate statistics: a practical approach, London: Chapman and Hall.

    82. Forta, J. C. and Pagès, G. (2002), Asymptotics of optimal quantizers for some scalar distributions,  Journal of Computational and Applied Mathematics, 146, 253-275.

    83. Foss, S., Korshunov, D., and Zachary, S. (2011). An introduction to heavy-tailed and subexponential distributions. Springer.

    84. Fryer1, D., Strumke, I. and  Nguyen, H. (2020), Shapley Value Confidence Intervals for Attributing Variance Explained,   in Frontiers in Applied Mathematics and Statistics 6, DOI: 10.3389/fams.2020.587199.

    85. Gersho, A. (1979), Asymptotically optimal block quantization, IEEE Trans. Inform. Theory, IT-25, 373-380.

    86. Gersho, A. (1982), On the stucture of vector quantizer, IEEE Trans. Inform. Theory, IT-28, 157-166.

    87. Gersho, A. and Cuperman, V. (1983), Vector quantization: A pattern-matching technique for speech coding, IEEE Commun. Mag., 21, 15-21.

    88. Gersho, A.  and Gray, R. M. (1992), Vector Quantization and Signal Compression, Kluwer Academy publishers: Boston.

    89. Ghitany, M., Alqallaf, F., Al-Mutairi, D. and Husain, H. (2011), A two-parameter weighted Lindley distribution   and its applications to survival data, Mathematics and Computers in Simulation, 81, 1190 – 1201.

    90. Gin'e, E. and Zinn, J. (1989), Necessary conditions for the bootstrap of the mean, Ann. Statist., 17, 684–691.

    91. Gnedenko, B. V., and Gnedenko, D. B. (1982), Laplace distributions and the logistic distribution as limit distributions  in probability theory, Serdica, 2, 229-234.

    92. Govil, K. K., and Aggarwal, K. K. (1983). Mean residual life function for normal, gamma and lognormal densities.   Reliability Engineering, 5(1), 47-51.

    93. Graf S., Luschgy H. (2000), Foundations of Quantization for Probability Distributions. Lecture Notes   in Math. 1730. Springer, Berlin.

    94. Graf, S. and Luschgy, H. (2007), Foundations of Quantization for Probability Distributions, Springer-Verlag, Berlin and Heidelberg.

    95. Gray, R. M. and Neuhoff, D. L. (1998), Quantization, IEEE Transactions on Information Theory, 44, NO. 6, 2325-2383.

    96. Grey, R.M. (1984),  Vector Quantization, IEEE ASSP Mag., 1, 4-29.

    97. Grey, R.M. and Karnin, E.D. (1982), Multiple local optima in vector quantizers, IEEE Trans. Inform. Theory, IT-28, 256-261.

    98. Grey, R.M. and Linde, Y.  (1982), Vector Quantizers for Gauss-Markov sources, IEEE Trans. Commun., COM-30, 381-389.

    99. Gu, X and Mathew, T. (2001), Some characterizations of symmetric two-principal points, Journal of Statistical Planning and     Inference, 98, 29–37.

    100. Gumbel, E.J. (1935), Les valeurs extremes des distributions statistiques, Annales de I'Institut Henri Poincare. 5(2), 115-158.

    101. Gumbel, E.J. (1941), The return period of flood flows, The Annals of Math. Statist., 12, 163-190.

    102. Guo, X., Jarrow, R.A., de Larrard, A. (2014). The economic default time and the arcsine law, Journal of Financial Engineering, 1(03).

    103. Gupta, RD, Kundu, D. (1999), Generalized exponential distributions, Aust. N. Z. J. Stat., 41(2), 173–188.

    104. HALL, P. (1990), Asymptotic properties of the bootstrap for heavy-tailed distributions, Ann. Probab., 18, 1342–1360.

    105. Hall, P. (1992) The Bootstrap and Edgeworth Expansion, Springer Science+Business Media New York, Originally publisbcd by Springcr-Verlag New York.

    106. Hall, W. J., and Wellner, J. A. (1981). Mean residual life. In Statistics and Related Topics, 169-184. New York: North Holland.

    107. Hagmark, PE, (2008), On construction and simulation of count data models, Math. Comput. Simul., 77, 72–80.

    108. Harding, J.P. (1949), The use of probability paper for the graphical analysis of polymodal   frequency distributions, J. of the Marine Biological Assoc., 28, 141-153.

    109. Harrell, F. and Davis, C.E. (1982), A new distribution-free quantile estimator, Biometrika, 69, 3, 635-640.

    110. Hasselblas, V. (1966), Estimation of parameters for a mixture of normal distributions, Technometrics, 8:3, 431-444.

    111. Hastie, T. and Stuetzle, W. (1989) Principal curves, Journal of the American Statistical Association, 84, 502-516.

    112. Hastie, T. and Tibshirani, R. (2008). Gaussian mixture models, {SL & DM.

    113. Hartigan, J. A. (1975), Clustering Algorithms. Wiley, New York.

    114. Hartigan, J. A. (1985), A failure of likelihood asymptotics for normal mixtures. In Proceedings of the Berkeley Conference in  Honor of Jerzy Neyman and Jack Kiefer, 2, 807–810, Wadsworth, Belmont, CA.

    115. Hartigan, J. A. and Wong, hl. A. (1979), Algorithm AS 136: A IC-Means Clustering Algorithm, Applied Statistics, 28, 100-108.

    116. Hastie, T. and Stuetzle, W. (1989), Principal curves. J. Amer. Statist. Assoc., 84, 502-516.

    117. Special issue on quantization (1982), IEEE Thans. Inform. Theory, 28, 127-202.

    118. Hogg, R. V., McKean, J., and Craig, A. T. (2005), Introduction to Mathematical Statistics, Sixth Edition, Pearson Education, Boston.

    119. Hornik, K., Feinerer, I., Kober, M. and Buchta, C. (2012), Spherical k-means clustering, J. Statistical Software,   50:10, http://www.jstatsoft.org/

    120. Hosmer,D. W. (1973a). A comparison of iterative maximum likelihood estimates of the parameters of a mixture  of two normal distributions under three different types of sample, Biometrics 29

    121. Hosmer, D. W. (1973b). On mle of the parameters of a mixture of two normal distributions when  the sample size is small, Communications in Statistics, 1(3), 217--227.

    122. Hsu, D. A. (1979), Long-tailed Distributions for Position Errors in Navigation, Applied Statistics, 28, 62-72.

    123. Hua, L. K. and Wang, Y. (1981), Applications of Number Theory to Numerical Analysis, Springer-Verlag and Science Press,  Berlin and Beijing.

    124. Hyndman, R. J. and Fan, Y. (1996), Sample quantiles in statistical packages, American Statistician  50, 361–365. https://doi.org/10.2307/2684934

    125. Inman, H. F., Bradley, E. L. (1989). The overlapping coefficient as a measure of agreement between probability distributions and point estimation of the overlap of two normal densities, Communications in Statistics - Theory and Methods, 18(10), 3851--874.

    126. Iyengar, S. and Solomon, H. (1983), Selecting representative points in normal populations. In Recent Advances in Statistics:  Papers in Honor of Herman Chernoff on his 60th Birthday, (M. H. Rizvi, J. Rustagi and D. Siegmund, eds.) 579-591. Academic Press, New York.

    127. Jiang, J.J., He, Ping and Fang, K.T. (2015), An interesting property of    the arcsine distribution and its applications, Stat. and Prob. Letters, 105, 88-95.

    128. Johnson, M.E. (1987), Multivariate Statistical Simulation, Wiley, New York.

    129. Jones, M.C. (2004), Families of distributions arising from distributions of order statistics, Test, 13, 1–43.

    130. Kabak, P. (1984), Quantizers for the gamma distribution and other symmetric distributions,  IEEE Trans. on Acoustics Speech, and Signal Processing, ASSP-32, No.4, 836-841.

    131. Kaigh, W. D., Lanchenbruch, P. A. (1982), A generalized quantile estimator, Commun. Statist.  Part A Theor. Meth., 11:2217–2238.

    132. Ke, X., Wang, S., Zhou, M. and Ye, H. (2023), New Approaches on  Parameter Estimation of the Gamma Distribution, Mathematics,  11, 927. https://doi.org/10.3390/ math11040927.

    133. Khorashadizadeh, M., Roknabadi, A. R., and Borzadaran, G. M. (2012). Characterizations of lifetime distributions based on doubly truncated mean residual life and mean past to failure. Communications in Statistics-Theory and Methods, 41(6), 1105-1115.

    134. Kong, L.; Chatzinotas, S.; \``{O}ttersten, B. (2020), Unified framework for secrecy characteristics with mixture of Gaussian (MoG) distribution,  IEEE Wirel. Commun., 10, 1625–1628.

    135. Khorashadizadeh, M., Roknabadi, A. R., and Borzadaran, G. M. (2017). Some characterization results based on doubly truncated reversed residual lifetime random variable. REVSTAT–Statistical Journal, 15(1), 89-105.

    136. Kieffer, JOHN C. (1983), Uniqueness of locally optimal quantizer for log-concave density and convex error weighting function,  IEEE Transactions on Information Theory, VOL. IT-29, NO. 1, 42--47.

    137. Kotz, S. (2003). The Laplace Distribution and Generalizations: a Revisit with Applications to Communications, Economics,  Engineering, and Finance[J]. Journal of the Royal Statistical Society, 97(460) :1210-1211.

    138. Kotz, S., and Shanbhag, D. N. (1980). Some new approaches to probability distributions. Advances in Applied Probability, 12(4), 903-921.

    139. Krzanowski, W. J. and Lai, Y. T. (1988). A criterion for determining    the number of groups in a data set using sum-of-squares clustering, Biometrics, 44,    23-34.

    140. Kuivi, M.F. (1997), Estimation of Principal Points using Smooting, Ph.D. thesis, Department of Mathematical Sciences, Edmonton, Alberta, Canada.

    141. Kurata, H. (2008), On principal points for location mixtures of spherically symmetric  distributions, Journal of Statistical Planning and Inference, 138, 3405 -- 3418.

    142. Kurata, H. and  Qiu, D. (2011). Linear subspace spanned by principal  points of a mixture of spherically symmetric distributions, Communications in Statistics-Theory and Methods, 40: 2737-2750.

    143. Lai, C. D., and Xie, M. (2006). Stochastic ageing and dependence for reliability. Springer Science & Business Media.

    144. Lawless, J. F. (2011). Statistical models and methods for lifetime data (Vol. 362). John Wiley & Sons.

    145. Lee, Y.W. (1960). Statistical Theory of Communications, New York:John Wiley & Sons.

    146. Lemaire, V., Montes, T., and Pagès, G. (2020). New weak error bounds and expansions for optimal quantization. Journal of Computational and Applied Mathematics, 371, 112670.

    147. Li, Y.N. and Fang, K.T. (2022), A New Approach to Parameter Estimation of Mixture of Two Normal Distributions, Communications in Statistics – Simulation and Computation, ~ doi/10.1080/03610918.2022.203377.

    148. Li, Y.N. and Fang, K.T., He, P. and Peng, H. (2022), Representative points from a mixture of two normal distributions,    Mathematics, 10, 3952. https://doi.org/10.3390/math10213952.

    149. Li, Y.N., Sun, Z. and Fang, K.T. (2023), General inverse transformation method via representative points in statistical simulation, submitted to    Communications in Statistics – Simulation and Computation.

    150. Li, L. and Flury, B.A. (1995), Uniqueness of principal points for univariate distributions, Statist. Probab. Lett., 25, 323-327.

    151. Liang, J., He, P., Yang, J. Testing Multivariate Normality Based on t-Representative Points. Axioms 2022, 11, 587. https://doi.org/10.3390/axioms11110587

    152. Linde, Y., Buzo, A., Gray, R. (1980), An algorithm for vector quantizer design, IEEE Trans. on Commun., COM-28, 84–95.

    153. Lindley, D. V. (1958). Fiducial distributions and Bayes’theorem, Journal of the Royal Statistical  Society. Series B. (Methodological) 20, 102–107.

    154. Liu, Y. (2019), Optimal Quantization: Limit Theorems, Clustering and Simulation of the McKean-Vlasov Equation,  Laboratoire de Probabilitès, Statistique et Modèlisation - UMR 8001, Sorbonne Universit, Ph.D thesis.

    155. Liu, Y., and Pagès, G. (2020). Convergence Rate of Optimal Quantization and Application to the Clustering Performance  of the Empirical Measure. Journal of Machine Learning Research, 21, 1-36.

    156. Lloyd, S.P. (1982), Least squares quantization in PCM, IEEE Trans. Inform. Theory, IT-28, 129-137.

    157. Lèvy, P. (1939). Sur certains processus stochastiques homogenes, Compositio Math., 7: 283-339.

    158. Lèvy, P. (1965). Processus Stochastiques et Mouvement Brownien, Gauthier-Villars, Paris.

    159. Lourens, S., Zhang, Y., Long, J.D., and Paulsen, J.S. (2013), Bias in estimation of a mixture of normal distributions,    J Biom Biostat., 2013; 4: . doi:10.4172/2155-6180.1000179.

    160. Luceno, A. (1999), Discrete approximations to continuous univariate distributions – an alternative to simulation, J. Royal Statist.   Soc. B, 61(2), 345–352.

    161. Luning L. and Bernard F. (1995), Uniqueness of principal points for univariate distribution, Statist. Probab. Lett, 25, 323-327.

    162. Luschgy, H., and Pagès, G. (2015). Greedy vector quantization. Journal of Approximation Theory, 198, 111-131.

    163. MacQueen, J, (1967), Some method for classification and analysis of multivariate observations, in Proceeding 5th Berkeley Symposium  on Math. Statist. and Prob., Vol 1, 281-296.

    164. Mak, S. and Joseph, R. (2020), Support points, The Annals of Statistics, 46(6A), 2562-2592.

    165. Mallows, C. L. (1972). A note on asymptotic joint normality, Ann. Math. Statist., 43, 508-515.

    166. Marriott, F. H. C. (1971). Practical problems in a method of cluster analysis,     Biometrics, 27, 501-14.

    167. Matsuura, S. and Kurata, H. (2010). A principal subspace theorem for  2-principal points of general location mixtures of spherically  symmetric distributions, Statistics & Probability Letters, 80:1863-1869.

    168. Matsuura, S. and Kurata, H. (2011), Principal points of a multivariate  mixture distribution, Journal of Multivariate Analysis, 102:213-224.

    169. Matsuura, S. and Kurata, H. (2013), Definition and properties of m-Dimensional n-Principal Points,   Communications in Statistics - Theory and Methods, 42:2, 267-282, DOI: 10.1080/03610926.2011.581791

    170. Matsuura, S. and Kurata, H. (2014). Principal points for an allometric extension   model, Statistical Papers,  55(3): 853-870.

    171. Matsuura, S. and Kurata, H. and Tarpey, T. (2015), Optimal estimators of principal points   for minimizing expected mean squared distance, Journal of Statistical Planning and Inference, 167: 102--122.

    172. Matsuura, S. and  and Tarpey, T. (2018), Optimal principal points estimators of multivariate   distributions of location-scale and location-scale-rotation families, Stat Papers,   https://doi.org/10.1007/s00362-018-0995-z.

    173. Max, J. (1960), Quantizing for minimum distortion, IRE Transformation theory, IT-6,7-12.

    174. Mazzeo, D., Oliveti, G. and Labonia, E. (2018), Estimation of wind speed probability density function using a mixture of two truncated   normal distributions, Renew. Energy, 115, 1260–1280.

    175. Mazuchelia, J., Menezesa, A.F.B. and Deyb, S. (2018), Bias-corrected maximum likelihood estimators of the   parameters of the inverse Weibull distribution, Comm. in Statis. —Simulation and Computation, DOI:10.1080/03610918.2018.1433838.

    176. McDonald, J.B. (1984), Some generalized functions for the size distribution of income, Econometrica, 52, 647–663.

    177. Middleton, D. (1965). Introduction to Statistical Communications Theory, New York: McGraw-Hill.

    178. Meng, L. (2016), Method for computation of the Fisher information matrix in the expectation–maximization Algorithm,   Thesis in Department of Applied Mathematics & Statistics, The Johns Hopkins University.

    179. Mark, S. and Joseph, V. R. (2018), Support points, The Annals of Statistics, 46:6A,  2562–2592.

    180. Nanda1, A. K. and Chowdhury, S. (2020), Shannon’s Entropy and Its   Generalisations Towards Statistical Inference in Last Seven Decades, International Statistical Review, 1–19, doi:10.1111/insr.12374

    181. Navarro, J., and Ruiz, J. M. (1996). Failure-rate functions for doubly-truncated random variables. IEEE transactions on reliability, 45(4), 685-690.

    182. Niederreiter, H. (1992), Random Number Generation and Quasi-Monte Carlo Methods, Soc. Industr. Appl. Math. (SIAM), Phiadelphia.

    183. Oliver,  B. M.,  Pierce, J. and  Shannon, C. E. (1948), The philosophy of PCM, Proc. IRE, 36, pp. 1324–1331.

    184. Olkin, I, Liu, R, (2003),  A bivariate beta distribution, Stat. Probability Lett., 62, 407–412.

    185. Ouarda, T.B.M.J. and Charron, C. (2018), On the mixture of wind speed distribution in a Nordic region, Energy Convers. Manag., 174, 33–44.

    186. Pagès, G. (1998). A space quantization method for numerical integration. Journal of Computational and Applied Mathematics, 89(1), 1-38.

    187. Pagès, G. (2014), Introduction to optimal vector quantization and its  applications for numerics, This article is developed version of a mini-course delivered during the ``$\grave{E}$cole    d'ètè” CEMRACS in July 2013 at CIRM (Marseille).

    188. Pagès, G. (2015), Introduction to vector quantization and its applications for numerics. ESAIM: proceedings and surveys, 48, 29-79.

    189. Pagès, G. (2018),Numerical Probability, An Introduction with Applications to    Finance, Springer, Universitext, Swissland.

    190. Pagès, G., and Printems, J. (2003). Optimal quadratic quantization for numerics: the Gaussian case,    Monte Carlo Methods and Applications mcma, 9(2), 135-165.

    191. Pagès, G. and Sagna, A. (2012), Asymptotics of the maximal radius of an  $L_r$-optimal sequence of quantizers, Bernoulli, 18:1, 360-389.

    192. Panaretos, V. M. and Zemel, Y. (2019), Statistical aspects of Wasserstein distances, Annu. Rev. Stat. Appl., 6, 405–431.

    193. Parrish, R. S. (1990). Comparison of quantile estimators in normal sampling, Biometrics, 46(1):247–257.

    194. Parzen, E. (1962), On Estimation of a Probability Density Function and Mode.The Annals of Mathematical Statistics, 33 (3): 1065.

    195. Pearson, K. (1894), Contribution to the theory of mathematical   evolution. Philos. Trans. R. Soc. Lond., Ser. A 186, 71–110.

    196. Pechtl, A. (1999). Distributions of occupation times of Brownian motion with drift. Journal of Applied Mathematics and Decision Sciences, 3(1): 41-62.

    197. Polard, D. (1981), Strong consistency of k-means clustering, Ann. Statist., 9, 135-140.

    198. Polard, D. (1982), Quantization and the method of k-means, IEEE Trans. Inform. Theory, IT-28, 199-205.

    199. Palmitesta, P. and Provasi, C. (2015), Computer Generation of Random Vectors from Continuous Multivariate Distributions,   https://www.researchgate.net/publication/268048278.

    200. P\''{0}tzelberger, K., and Felsenstein, K. (1991), An asymptotic Result on Principal Points for univariate Distributions,  (AC00567402 ed.) (Forschungsberichte / Institut f\''{u}r Statistik; No. 11). Department of Statistics and Mathematics,   WU Vienna University of Economics and Business.

    201. Puig, P. and A. Stephens, M.A. (2000), Tests of fit for the Laplace distribution, with applications, Technometrics, 42, 417-424.

    202. Qi, Z.F, Zhou, Y.D. and Fang, K.T. (2019), Representative points for location-biased datasets,   Commu. in Stat-Simulation and Computation, 48, NO. 2, 458–471.

    203. Ranalli, M., Lindsay, B.G. and Hunter, D.R. (2020), A classical invariance approach to the normal mixture problem,   Statistica Sinica, 30, 1235-1254.

    204. Rao, C. R. (1952), Advanced Statistical Methods in Biometric Research, Wiley, New York, pp. 300-304.

    205. Rover, C. and Friede, T. (2017), Discrete approximation of a mixture distribution via restricted divergence,  J. Computational and Graphical Statistics, 26:1, 217-222.

    206. A. Ridolfi, J. Idier (2001). Penalized maximum likelihood estimation for univariate normal mixture distributions,  AIP Conference Proceedings, 568, 229--237.

    207. Rinne, H, (2009), The Weibull distribution: a handbook, Taylor & Francis Group, LLC, Boca Raton, London and New York.

    208. Rizzo M.L., and Szèkely G.J. (2016), Energy distance,  Wiley Interdiscip Rev 8(1):27–38.

    209. Rizvi, M. H.,Rustagi,J. and Siegmund,D. (2014), {|it Recent Advances in Statistics: Papers in Honor of Herman  Chernoff on his 60th Birthday}. New York: Academic Press.

    210. Rosenblatt, M. (1956). Remarks on Some Nonparametric Estimates of a Density Function.  The Annals of Mathematical Statistics, 27 (3): 832.

    211. Sankaran, P. G., and Sunoj, S. M. (2004). Identification of models using failure rate and mean residual life of doubly truncated random variables. Statistical Papers, 45(1), 97-109.

    212. Sarabia, J.M., Prieto, F. and Jorda, V. (2014), Bivariate beta-generated distributions with  applications to well-being data, Journal of Statistical Distributions and Applications, 2014, 1:15, http://www.jsdajournal.com/content/1/1/15.

    213. Sathe, Y.S. and  Vard, S.D. (1969), On minimum variance unbiased estimation of reliability, The Annals of Mathematical Statistics,     40, No. 2, 710-714.

    214. Saumard, A.; Wellner, J.A. (2014), Log-concavity and strong log-concavity: a review. Stat. Surv., 444:8, 45–114.

    215. Seidel, W. E. (2010), Mixture model, in International Encyclopedia of Statistical Science,    ed. M. Lovric, Heidelberg: Springer, pp. 827–829.

    216. Serfling, R.J. (1980), Approximation Theorems of Mathematical Statistics, John Willey & Sons, New York.

    217. Sfakianakis, M.E. and Verginis, D.G. (2008), A New Family of Nonparametric Quantile Estimators,   Communications in Statistics -imulation and Computation, 37: 337--345.

    218. Shannon, C. E. (1948), A mathematical theory of communication, Bell Syst. Tech. J., 27, 379–423, 623–656.

    219. Shao, J and Tu, D. (1995), The Jackknife and Bootstrap, Springer series in statistics, New York.

    220. Sharma, D.K. (1978), Design of absolutely optimal quantizers for a wide class of distortion measures,   {it IEEE Trans. Infor. Theory}, IT-24, 693-702.

    221. Shen, X., Zhang, Y., Sata, K. and Shen, T. (2020), Gaussian mixture model clustering-based knock threshold learning in automotive engines,   IEEE ASME Trans. Mechatron. IEEE-ASME T MECH, 6, 2981–2991.

    222. Sheppard, W.F. (1898), On the calculation of the most probable values of   frequency constants for data arranged according to equidistant divisions   of a scale, Proc. London Math. Soc., 24, pt. 2, pp. 353–380.

    223. Shi X. (1986), A note on bootstrapping the U-statistics, Chinese J. Appl. Prob. Statistics, 2(2), 144-148.

    224. Singh, U., Gupta, P.K. and  Upadhyay, S.K. (2005), Estimation of three-parameter   exponentiated-Weibull distribution under type-II censoring, Journal of Statistical Planning and Inference, 134, 350-372.

    225. Sitgreaves, R. (1961), Optimal test design in a special situation, Chapter 3,   Studies in Item Analysis and Prediction, Edited by Herbert Solomon, Stanford University Press, California, USA.

    226. Smith, R.L. and  Naylor, J.C. (1987), A Comparison of maximum likelihood and Bayesian estimators for the three-   parameter Weibull distribution, Journal of the Royal Statistical Society. Series C (Applied Statistics), 36, No. 3,  358-369.

    227. Shimizu, N. and Mizuta, M. (2008), Functional principal points and functional   cluster analysis, A chapter in L.C. Jain et al. (Eds.): Comp. Intel. Para.: Innov. Applications, SCI 137, pp. 149–165, 2008.   springerlink.com, Springer-Verlag Berlin Heidelberg.

    228. Singh, K. (1981). On the asymptotic accuracy of Efron's bootstrap, Ann. Statist., 9, 1187-1195.

    229. Szèkely, G. J. and Rizzo, M. L. (2013). Energy statistics: A class of statistics based on   distances, J. Statist. Plann. Inference, 143, 1249–1272.

    230. Stampfer, E. and Stadlober, E. (2002). Methods for estimating principal  points. Communication in Statistics-Simulation and Computation, 31:261-277.

    231. Su, Y. (2000), Asmptotically optimal representative points of bivariate random vectors, Statistica Sinica, 10, 559-575.

    232. Sunoj, S. M., Sankaran, P. G., and Maya, S. S. (2009). Characterizations of life distributions using conditional  expectations of doubly (interval) truncated random variables. Communications in statistics-Theory and Methods, 38(9), 1441-1452.

    233. Tarpey, T. (1992), Principal points. Ph.D. dissertation, Dept. Mathematics, Indiana Univ.

    234. Tarpey, T. (1994), Two principal points of symmetric, strongly      unimodal distributions, Statistics and Probability Letters, 20, 253-257.

    235. Tarpey, T. (1995), Principal points and self-Consistent points of symmetrical multivariate distributions,          J. Multivariate Analysis, 53, 39-51.

    236. Tarpey, T. (1997), Estimating principal points of univariate distributions, Journal of Applied Statistics, 24, 499–512.

    237. Tarpey, T. (1998), Self-consistent patterns for symmetric multivariate distributions, Journal of Classification, 15, 57–79.

    238. Tarpey, T. (1999), Self-Consistency Algorithms. Journal of Computational and Graphical Statistics, 8:889-905.

    239. Tarpey, T. (1999), Self-Consistency and principal component analysis, Journal of the American Statistical Association, 94:446, 456-467.

    240. Tarpey, T. (2000), Parallel principal axes, J. Multivariate Analysis, 75, 295 - 313.

    241. Tarpey, T. (2007a), Linear transformations and the k-means clustering algorithm: Applications to clustering curves,  Amer. Statistician, 61, 34–40.

    242. Tarpey, T. (2007b), A parametric k-means algorithm, Computational Statistics, 22:71-89.

    243. Tarpey, T. and Flury, B. (1996). Self-consistency: a fundamental   concept in statistics, Statistical Science, 11(3): 229-243.

    244. Tarpey, T. and  Loperfido, N. (2015),  Self-consistency and a generalized principal subspace theorem, Journal of Multivariate Analysis, 133, 27–37.

    245. Tarpey, T., Li Luning and Flury, B. (1995) Principal points and    self-consistent points of elliptical distributions, Annals of Statistics, 23, 103-112.

    246. Tarpey, T. and Petkova, E. (2010), Principal pointclassification: Applications to differentiating drug and placebo    responses in longitudinal studies, Journal of Statistical Planning and Inference, 140, 539--550.

    247. Tashiro, Y. (1977), On methods for generating uniform points on the surface of a sphere, Annals of Institute of    Statist. Math, 29, 295-300.

    248. Teicher, H. (1963). Identifiability of finite mixtures, The Annals of Mathematical Statistics, 34(4), 1265--1269.

    249. Teimouri, M., and Nadarajah, S. (2013), Bias corrected MLEs for the Weibull distribution based on records,   Statistical Methodology, 13, 12–24.

    250. Trushkin, A.V. (1982), Sufficient conditions for uniquess of a locally optimal quantizer for a class of conver    error weighting functions, IEEE Trans. Inform. Theory, IT-28, 187-198.

    251. Venkataraman, S. (1997), Value at risk for a mixture of normal distributions: the use of quasi- Bayesian estimation techniques, Economic   Perspectives, Federal Reserve Bank of Chicago,  21, 2–13.

    252. Wang, H. (1995), Problems of choosing representative points of given data in S-type distributions,    Journal of Fuzhou University, 23, 7–13.

    253. Wang, Y. and Fang, K.T. (1990), Number theoretic method     in applied statistics, Chinese Annals of Math. Ser. B, 11, 41-55.

    254. Wang, Y. and Fang, K.T. (1990), Number theoretic method     in applied statistics (II), Chinese Annals of Math. Ser. B, 11, 384-394.

    255. Wang, Y. and Fang, K. T. (1996), Uniform design of  experiments with mixtures, Science in China (Series A), 39, 264-275.

    256. Wang, S, Liang, J., Zhou, M. and Ye, H. (2022), Testing Multivariate Normality Based on   F-Representative Points, Mathematics, 10, 4300. https://doi.org/10.3390/math10224300

    257. Wang, Y.C., Ning, J.H., Zhou, Y.D. and Fang, K.T. (2015), Randomized Likelihood Sampling. In Souvenir   Booklet of the 24th International Workshop on Matrices and Statistics, (25-28 May 2015), Haikou   City, Hainan, China. Ed. Jeffrey J. Hunter, 255-261.

    258. Wang, M. and Wang, W. (2015), Bias-corrected maximum likelihood estimation of the    parameters of the weighted Lindley distribution, Communication in Statistics- Simulation and Computation, DOI: 10.1080/03610918.2014.970696

    259. Xiong Z, Xiao Y, Ning J, Qin H. (2022), Representative points based on power exponential kernel discrepancy, Axioms,  11(12):711, https://doi.org/10.3390/axioms11120711

    260. Xu, L.H., Fang, K.T. and He, P. (2021), Representative points of the exponential distribution, Statistical Papers, hppt://10.1007/s00362-021-01236-1.

    261. Xu, L.H., Li, Y.N. and Fang, K.T. (2022), The resampling method via representative points, submit to Statistical Science.

    262. Xu, L.H., Fang, K.T. and Pan, J.X. (2021) Limiting behavior of the gap between the largest two representative     points of statistical distributions, Computational Statistics and Data Analysis, https://www.tandfonline.com/loi/lsta20.

    263. Xu, D. (2009), The applications of mixtures of normal distributions in empirical finance: A selected survey. No 0904, Working Papers,   University of Waterloo, Department of Economics.

    264. Yamamoto, W. and Shinozaki, N. (2000a), On uniqueness of two principal points  for univariate location mixtures, Statistics & Probability Letters, 46 33--42.

    265. Yamamoto, W. and Shinozaki, N. (2000b),  Two principal points for multivariate  location mixtures of spherically symmetric distributions, Journal of the Japan Statistical Society, 30(1), 53-63.

    266. Yakowitz, S. J., Spragins, J. D. (1968). On the identifiability of finite mixtures. The Annals of Mathematical Statistics,      39(1), 209--214.

    267. Yang, J., He, P. and Fang, K.T. (2021). Representative points of elliptically contoured distributions, submitted to   J. Multivariate Analysis, https://doi.org/10.1016/j.jmva.2021.104829.

    268. Yang, S. S. (1985), A smooth nonparametric estimator of a quantile function, J. Amer. Statist. Assoc., 80(392):1004–1011.

    269. Yu, F. (2022), Uniqueness of principal points with respect to p-order  distance for a class of univariate continuous distribution, Statistics and Probability Letters, 183, Doi.org/10.1016/j.spl.2021.109341

    270. Zador, P.L. (1982), Asymptotic quantization error of continuous signals and the   quantization dimension, IEEE Trans. Inform. Theory, 28, 139-149.

    271. Zhu, C. (2009), Existence and consistency of the maximum likelihood estimator for the extreme value index,   Journal of Multivariate Analysis, 100, 794--815.100 (2009) 794--815

    272. Zhou Y.D and Fang, K.T. (2019), FM Criterion in representative points, Scientia Sinica Mathematics, 49, 1009-1020.

    273. Zhou, Y.D. and Fang, K.T. and Ning, J.H. (2013), Mixture discrepancy for quasi-random point sets, J. Complexity, 29, 283-301.

    274. Zhou, M. and Wang, W.J. (2016), Representative points of Student's tn distribution and applications in statistical simulation,   Acta Mathematicae Applicatae Sinica, 39:4, 620--640.

    275. Zoppè, A. (1992). I punti principali di distribuzioni univariate.      Ph.D. dissertation, Dept. Statistics and Operations Research, Univ. Trento (Italy).

    276. Zoppè, A. (1995), Principal points of univariate continuous distributions, Statistics and Computing, 5, 127-132

    277. Zoppè, A. (1997), On uniqueness and symmetry of self-consistent points of univariate continuous distributions.     J. Classification, 14, 147-158.

    278. 陈希孺,(1981), 数理统计引论,科学出版社, 北京.

    279. 方开泰,许建伦  (2016), 统计分布, 高等教育出版社, 北京.

    280. 方开泰, 贺曙东  (1984), 在正态总体中如何选择给定数目的代表点的问题, 应用数学学报, 7, 293-306.

    281. 方开泰, 魏刚 (1992), 一个特殊``首达时刻''的分布, 应用数学学报, 15, 460-467.

    282. Fang, K. T., He, P. and Yang, J. (2020), Set of representative points of statistical  distributions and their applications, Scientia Sinica Mathematica, 50, 1149–1168.

    283. Fei, R. C. (1991), Statistical relationship between the representative point and the   population, Journal of the Wuxi Institute of Light Industry, 10(1), 78–81.

    284. Fei, R. C. (1992),The problem of selecting representative points from population,   Comm. on Appl. Math. and Comput.,  16(1), 94–96.

    285. Fu, H. H. (1985), The problem of selecting a specified number of representative points   from a gama population, Journal of China University of Mining & Technology,  4, 107–117.

    286. Fu, H. H. (1993), The problem of the best representative points for weibull population,   Journal of China University of Mining & Technology, 22, 123–134.

    287. 王宏健 (1995), 在S 形分布中选择给定数目的代表点问题, 福州大学学报(自然科学版), 23, No.4, 7-13.

    288. 史道济 (2006), 实用极值统计方法,天津科学技术出版社。

    289. 周敏,汪文俊(2016), t 分布的代表点及其在统计模拟中的应用, 应用数学学报, 39, 620--640.

    290. 曹辉 (2018), Laplace~分布的统计推论及应用,扬州大学硕士论文.

    291. 周永道,方开泰 (2019), FM-代表点, 中国科学: 数学 第49 卷第2 期.

    292. 张尧庭,方开泰 (1982, 1999, 2003), 多元统计分析引论,  科学出版社, 北京.

    293. 吴丽华,叶扬 (2016), 三种混合二维正态分布代表点生成方法的比较,四川大学学报(自然科学版), 53No 4, 713--718.